
AD-A256 130II~I I~I DIII I 11111 I II il

NAVAL POSTGRADUATE SCHOOL
Monterey, California

-1 TA ,• DTIC
SFLECTE

OCT~I 9 19

THESIS

DEVELOPMENT OF A MATLAB TOOLBOX
FOR IMAGE PROCESSING

by

Dorothy J. Freer

June 1992

Thesis Advisor: Charles W. Therrien

Approved for public release; distribution is unlimited

92-27344

-) 'ý U?)L

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704o0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSI FlED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b DECLASSIFICATIONiDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NL,UMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANiZATiON

(If applicable)

Naval Postgraduate School EC Naval Postgraduate School
6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS(City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATiOrJ NUMBER

ORGANIZATION I (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

"PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

DEVELOPMENT OF A MATLAB TOOLBOX FOR IMAGE PROCESSING

12 PERSONAL AUTHOR(S)

FREER. Dorothy J.
13a TYPE OF REPORT 113b TIME COVERED 114 DATE OF REPORT (Year, Month Day) 1S PAGE COUNT

Master's Thesis IFROM TO _ 1 1992 June 1 49
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the US government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP image processing; MATLAB; Toolbox; display;
MEX-files

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis provides an Image Processing Toolbox for use with MATLAB which
contains ready-made tools for students and faculty who wish to continue
research in image processing and related areas. The Toolbox is available
for several computer environments. The documentation provided with the
distribution diskette contains both a tutorial and reference section in
the MATLAB style. This thesis report provides information needed to
write and compile C language programs for use as MEX-files, an overview
of the Toolbox, and a case study which illustrates the use of some of the
functions in the Toolbox.

,o :),5,P;if j [TN AVA4AF[BII t KOF AB',TRA(1 21 ABSTRACT SECURITY CIASS IF(ATI()N

(-.JIjCLASS;.,l),,,NIMI rF I SAME AS RPT E)TIC tIJSERS UNCLASSIFIED
2,2 'IA%4F OF 777777)9I7tF 747)7I77 22h TELEPHONE (Include Area Code) .' (IF I(E %7(

THERRIEN, Charles W. 408-646-3347 EC/Ti
DO Form 1473, JUN 86 Previous editions are obsolete ______ T (T i (L ASSIf i(A (IN IiF TJie IIA(,F

S/N 0102-LF-014-66() UNCLASSIFIED
i

Approved for public release; distribution is unlimited

DEVEVLOPMENT OF A MATLAB TOOLBOX FOR IMAGE PROCESSING

by

Dorothy J. Freer
Lieutenant, United States Navy
B.S., U.S. Naval Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1992

Author:
•, othy J. Freer

Approved by:
ha les W. Therin, Thesis Advisor

i/ober6 dristi, Second Reader

Michael A. MorgaW, Chairman
Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis provides an Image Processing Toolbox for use with MATLAB which

contains ready-made tools for students and faculty who wish to continue research in image

processing and related areas. The Toolbox is available for several computer

environments. The documentation provided with the distribution diskette contains both a

tutorial and reference section irl the MATLAB style. This thesis report provides

information needed to write and compile C language programs for use as MEX-files, an

overview of the Toolbox, and a case study which illustrates the use of some of the

functions in the Toolbox.

Acajsjoa For

N11S QZJ'a

-, •--•-t St "'e, at I l!

0,

DI t special

';- • a~lland/or
[i~lst £pocial

iii t..

TABLE OF CONTENTS

1. IN TR O D U CTIO N ... I

A. AN OVERVIEW AND PURPOSE .. I

H. CREATING MEX-FILES .. 3

A . IN TRO D U CTION ... 3

B. WHY MEX-FILES INSTEAD OF M-FILES 3

C. COMPILATION OF C PROGRAMS ... 4

D. USEFUL SUBROUTINES FOR IMAGE PROCESSING

FU N C TIO N S .. 5

E. CONVERSION OF MEX-FILES TO PRO-MATLAB

V E R SIO N 4 ... 8

III. M A TLAB TOO LBO X .. 11

A. IM AGES AS M ATRICES ... 11

B. INPUT/OUTPUT AND DISPLAY FUNCTIONS 11

C. EDGE DETECTION OPERATIONS ... 15

D . FIL T E R S 17

E. MORPHOLOGICAL OPERATIONS .. 19

F. HISTOGRAMS 23

G . SU M M4A R Y .. 5

IV . A C A SE STU D Y ... 27

A . D ISC U SSIO N ... 27

B. CONCLUSIONS .. 34

V SUMMARY AND CONCLUSIONS ... 35

A . REVIEW O F TH ESIS 35

B. AREAS FOR FUTURE WORK ... 36

1. Expanding the Toolbox ... 36

iv

2. Creating an Interface Between MATLAB and the
SPID ER Library ... 36

APPENDIX A - EXAMPLE MEX-FILE ... 37

APPENDIX B - SUGGESTED READING ... 40

LIST OF REFEREN CES ... 41

INITIAL DISTRIBUTION LIST .. 42

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Therrien for

giving me the support and encouragement to complete this

thesis and the accompanying book.

My sister Carol who was always available for keeping me

going through the rough spots.

My dear friends and confidantes, Karen Callaghan and

Karen Hagerman, whose constant humor kept me laughing, and

whose technical expertise made the completion of this thesis

a breeze.

My husband Bob and daughter Kerri, whose encouragement,

support, and love have meant so very, very much.

vi

L INTRODUCTION

A. AN OVERVIEW AND PURPOSE

The MATLAB programming environment is a user-friendly workspace oriented

system based on a very high level language that has vectors and matrices as its main

variables. There are several toolboxes currently available for use with MATLAB that

provide added benefits. These include the Signal Processing, Controls, and Systems

Identification toolboxes, to name a few. This thesis develops a new toolbox for

MATLAB called the Image Processing Toolbox. Many of the basic functions in the

toolbox were provided by Erkan Aykaq in his thesis, "Enhancement of Image Processing

Capabilities for Different Environments".[Ref. 5] This thesis adds to and improves the

efficiency of many of the functions written by Aykaq and provides several other new

functions. The result is a set of image processing functions contained in an Image

Processing Toolbox, complete with a Tutorial and Reference Guide, as well as distribution

diskette. The complete software includes input/output and display routines,

morphological operations, filters, histogram manipulation functions, edge detection and

enhancement operations, and size manipulation functions. The functions are contained in

M-files and MEX-files, and are available for use in PRO-MATLAB, 386-MATLAB, and

PC-MATLAB. The MEX-files are source coded in the C language. For the 386-

MATLAB version the software was written and compiled using Metaware High C with

the Phar Lap 3861Dos-Extender. For the PC-MATLAB version, the source code was

written and compiled using Borland Turbo C. The source code for PRO-MATLAB was

compiled using the compiler on the SUN Microsystems Operating System version 4.1.1.

This thesis describes the new toolbox and provides documentation for adding to the

system. It gives detailed descriptions for how to write and compile C source code for all

three systems, as well as instructions for accomplishing the task for the new MATLAB

version 4.0, that will soon become available. In order to upgrade the toolbox to version

4.0 new source code need not be written; there is a switch that can be used to compile the

version 3.x code for use in version 4.0. The procedures are described in Chapter II. In

addition to the above, this thesis provides descriptions for use of the software, and a case

study that illustrates application of the toolbox functions to an image processing problem.

2

H. CREATING MEX-FILES

A. INTRODUCTION

Most functions written by users in MATLAB are written as so-called M-files.

These are ASCII files written in the (MATLAB) language and are interpreted by the

MATLAB interpreter. MATLAB also provides the ability to write compiled functions in

FORTRAN or C and incorporate these into the language. MATLAB refers to these as

"MEX" files for "MATLAB executable". For development of this Toolbox we found it

highly desirable, and sometimes absolutely essential to implement some of the functions as

MEX-files.

B. WHY MEX-FILES INSTEAD OF M-FILES

The objective of writing a function in MATLAB should be to improve the ease with

which recurring calculations are performed. To that end one must consider the

advantages and disadvantages of both the M-file option and the MEX-file option. The M-

file option may appear to be the simplest route, however since M-files are interpreted, not

compiled, the speed of calculations may be hampered by MATLAB's methods of

computation. If one can take advantage of the efficiency with which MATLAB performs

array-based calculations, then the M-file approach may be the best solution. In other cases

involving large amounts of computations, M-files may be too slow. "For loops" are

especially slow since all of the variable indexing and testing is done by the interpreter. On

the other hand MEX files, written in C, can directly take advantage of the machine index

registers and test and branch instructions and so can perform computations that require

loops extremely fast. Another advantage to the MEX-file solution is the user's choice of

3

what type of numerical calculations are performed. In C, the programmer has a choice of

using several variable types, such as the unsigned or signed char, unsigned int, short int,

and double. MATLAB automatically stores all variables as double precision floating point

numbers and thus performs calculations on double precision floating point numbers This

involves sixteen bytes for each number stored and computation may be relatively slow

even with the math coprocessor. When C programming is used, the programmer can

choose short int, which involves two bytes, or even unsigned char, which involves only

one byte per number! The savings in computation time can be tremendous when one

considers that a typical size for an image matrix is 512 by 512 elements or larger. The

following descriptions for creating MEX-files assumes the reader has a working

knowledge of the C programming language.

C. COMPILATION OF C PROGRAMS

MEX files are compiled using the CMEX utility contained in the \MATLAB\MEX

directory of each version of MATLAB. In order to use C programs with MATLAB they

have to have special characteristics that are unique to MEX programs. Most of these

characteristics are explained in the Calling C and FORTRAN Subroutines section of the

PC-MATLAB, 386-MATLAB, and PRO-MATLAB manuals.[Ref. 7, Ref 8, Ref 9]

Some points to remember are listed below:

", At the very least the file "cmex.h" and the library <math.h> must be #included in

the function to be compiled. Several MEX routines are internal to MATLAB and,

when used in the MEX file in place of the standard C routines, eliminate the

requirement to include and thus link the entire C libraries.

"* main() is not used, userrcn() is used instead. The arguments of user fcn() are

nihs,plhs,nrhs,prhs. The arguments nlhs and nrhs represent the number of left-hand

4

side (output) arguments and the number of right-hand side (input) arguments, while

plhs and prhs are pointers to arrays of length nlhs and nrhs, respectively, that are

pointers to the output and input matrices.

e A Matrix struct pointer must be defined for each variable, both input and output.

* The number of left-hand side arguments and right-hand side arguments must be

correct. This is a difference encountered when invoking a MEX function as

opposed to a junction written as an M-file. An error occurs if there is rn output

argument when the C program is expecting one. (This cait be avoided if an

additional subroutine is included to create "ans" as the output argument, however

that is a somewhat cumbersome process.)

* Matrices are stored in MATLAB columnwise, and are stored in C row-wise.

* The initial coordinates of a matrix stored in C are [0][0], the initial coordinates of a

matrix stored in MATLAB are (1,1).

The same section of the PC-MATLAB manual explains the contents of the

\MATLAB\MEX directory and gives an example of C source code. The example,

YPRIME.C, is very useful for illustrating the organization of MEX files. Two other

example functions written by Erkan Ayka9 are mexampil and mexampl2. The

descriptions for these are in his thesis, [Ref 5: Apperdix A], and the source code and

compiled MEX-files are provided on the MATLAB Image Processing Toolbox

distribution diskette.

D. USEFUL SUBROUTINES FOR IMAGE PROCESSING FUNCTIONS

The special characteristic of images that makes MEX files much faster for

computations is that they are exclusively stored as integer valued matrices. That is, all

data manipulatior, done on image matrices an some computations involve only integer

5

arithmetic (computations, such as filtering, however, may need to be done in floating

point). When writing a MEX file, the variables are automatically cast in the Matrix struct

as defined by the CMEX utility. The Matrix struct casts all variables as double precision

floating point one-dimensional arrays. Thus for every pixel there is an index calculation to

reach the pixel, and then the calculations ýerformed are on doubles. In order to avoid

these superfluous calculations each time, we have provided three functions that can be

added to the C program that:

1. Recast the real pointer variable as a one-dimensional integer array.

2. Put the integer array into a doubly-dimensioned array.

3. Once calculations are complete, recast the output variables as

one-dimensional arrays of doubles.

These functions are called recalloc, redimension, and rematlab, respectively. The source

code for them is shown in Figure 3-1 and an example of their use, the function equal, is

printed in Appendix A.

All of the previous points regarding writing MEX files hold for all three versions of

MATLAB (PC-MATLAB, 386-MATLAB, and PRO-MATLAB). The size of the image

data file is not a concern when using 386- or PRO-MATLAB since the operating system

that is being used will dictate how large the data files can be. In PC-MATLAB, however,

there is a restriction on the size of the variables that MATLAB can use. The maximum

number of elements that a single matrix can have in PC-MATLAB is 8188 elements.

Since the input/output routines contained in this thesis's Toolbox are all written in C, the

standard MATLAB check of the size of the variable before loading it into the environment

is not performed. Therefore, when writing MEX files for use in the PC-MATLAB

environment, an additional check must be added to ensure that there is no attempt to

import a variable too large into the environment. This is a short if loop that checks the

6

short int** recalloc(mnn)
int m,n;
I
short int * *array;
int i;

array=(short int* *) mex cJloc(m,sizeof(short int*));
for (i=O;i<M;4-+i)

array[i] = (short int*) mex calloc(n~sizeof(short int));
return array;

(a)

void redimension(array out, array in, mn)
short mnt ** array_out;
int m,n;
double *afay jfl;

int i~j;
for (i0-;i<n- 1 ;++i)

for (j=Oj<m-1;++j)
array outU][i]=array mnhi*m+j];

(b)

void rematlab(array__out,array~in,m,n)
short int **ar.ay~in.
int m,n;
double *affay_out;

int ij;
for (i=O;i<n-1I;++i){

for (j=Oj<m- I ;++j)
array out[i*m+j]=(double)array_injjl[i];

(C)

Figure 3-1. C-code for (a) Recalloc, (b) Redimension, (c) Rematlab.

7

total number of elements in the data file. If the image is too large only the upper left

comer, 64 by 64 pixels, is loaded into MATLAB. All of the MEX-files for PC-MATLAB

perform this check. The code for the if loop is shown in Figure 3-2.

unsigned long total; /*total is the total number of 8-bit elements in the image file*/
unsigned int m,n; /*m,n are the image dimensions*/

if (total>8188L) {
for (j=Oj<16j++) { /*gets the pixel values in a row by row fashion*/

for (i=O;i< 16;i++)
bU+16*i]=(double)fgetc(in); /*b is the output variable, in is the in-file pointer*/

for (k=0;k<(n- 16);k++)
fgetc(in); /*dump the rest of the line beyond 16*/

I

Figure 3-2. If-loop for truncating size of matrix.

E. CONVERSION OF MEX FILES TO PRO-MATLAB VERSION 4

The newest version of MATLAB, version 4.0, is not yet available for public release.

The beta copy has been released to a limited number of users including the Naval

Postgraduate School. The information provided in this section was obtained from the beta

documentation [Ref 4] that was supplied with the Beta 3 PRO-MATLAB version 4.0.

The PRO-MATLAB version is the only MATLAB 4.0 available at this time, and no

specific information for the 386-MATLAB or PC-MATLAB is available yet. The flag to

use to convert code written for MATLAB version 3.5 to compile and use in MATLAB

version 4.0 is -v3.5 and is added at the end of the cmex command. A sample command is

shown below:

cmex foo.c -v3.5

All of the C source code provided on the distribution diskette with the Image Processing

Toolbox can be compiled for version 4.0 using the flag.

8

There are some significant changes from the version 3.5 MEX-file structure. The

program must now contain two distinct sections, a "gateway routine" and a

"computational routine." [Ref 4] The gateway routine serves as the interface between

MATLAB and the computational routine. The computational routine is the portion of the

code that actually performs the numerical computations. Reference 4 contains an example

MEX-file program, YPRLME.C. Significant points to note from that example are:

* The entry point to the computational routine must be called meiFunction instead of

userfcn while the arguments remain the same.

* The computational routine may be placed before the gateway routine.

Several routines that were contained in cmex.h have been renamed in mex.h. Table 2-1

contains a partial list. (See Ref 4 for a complete list.)

One additional feature of MATLAB version 4.0 that is of some interest to this

author is the addition of a switch for the cmex command that creates a stand-alone

program from the MEX-file code for use with a standard C debugger! This feature will

undoubtedly save many hours of frustration! The reader is cautioned that the beta

version may not be exactly the same as the publicly released version 4.0. Therefore some

information in this section may not be correct when the final product is released from The

MathWorks.

9

TABLE 2-1

CONVERSIONS FROM MATLAB VERSION 3.5 TO VERSION 4.0

MATLAB 3.5 MATLAB 4.0

user fcn mexFunction

mex error mexErrMsg

matlab fcn MexCaIIM.ATLAB

mex calloc mxCalloc

p ->m rnxGetM

=v ->pr nixGetPr

create matrix mxCreateFull

10

IIL MATLAB TOOLBOX

A. IMAGES AS MATRICES

MATLAB uses only one type of object, a rectangular numerical matrix that can have

real or complex elements. Vectors, i.e. variables indexed by a single integer rather than a

pair of integers, are also recognized by the language, but in reality these variables are the

same as a matrix with either a single roy" or a single column. Scalars are also recognized

as matrices with one row and one column. In the Image Processing Toolbox the matrix is

further considered to be in one of three possible categories:

Numerical- a numerical variable (matrix, vector or scalar). The values can be
either real or complex.

Image- a rectangular or square array of real integers valued from 0 to 255. These
values represent eight-bit gray levels or intensity values.

Graphic- an array of binary values (0 or 1).

Some functions work only with graphics, some only with images, and some with all

three types. The help command tells you which data type is used for each function.

B. INPUT/OUTPUT AND DISPLAY FUNCTIONS

Images can be stored in several formats. The two specific types recognized by this

toolbox conform to the USC/SIPI and ITEX PCplus data structures. The USC/SIPI

format does not store a header in the image; the ITEX PCplus may or may not store a

header. Both store the image in row order and store each pixel as a single byte. The

image input/output routines of this toolbox check for image type and strip out the header

information when retrieving the data.

51• 1

The function readhead returns the header information from the image file. This

function is useful when the size or other information about the image is desired without

loading the entire image into the MATLAB environment.

The functions readim and rim both strip the header information from the image and

load the image into a variable in the MATLAB environment. readim returns the entire

image while rim returns only a portion of the image specified when you invoke it.

When an image is obtained by using the frame grabber in Spanagel 315 with the

prtmenu software on the PC, the image is stored as a 511 by 511 matrix. Most of the

applications in this Image Processing Toolbox function best with images that are square

and have dimensions that are powers of 2. Therefore the function ITEX2PCP has been

included in the Toolbox. It simply takes a 511 by 511 matrix and appends a row and

column of zeros to create a 512 by 512 matrix.

The functions putim and saveim save images to the disk. The putim function saves

the image in the USC/SIPI format with no header. The saveim command saves the image

in the ITEX/PCplus format with a header and the option to include additional comments.

The header and comments are returned by the readhead functions mentioned above.

The two remaining input/output functions, putdata and getdata, are used with

matrices instead of images and are not specific to image processing. The data for these

functions may be generated by any programming language, and can be used in a variety of

applications within MATLAB. putdata creates an ASCII data file containing a single

matrix variable and getdata reads this type of file and creates a variable in the workspace.

Since the data file is in ASCII format, it may be created, viewed, or modified with any

standard text editor. The getdata and putdata function pair is a convenient way to

transfer data between MATLAB and any other language such as C, FORTRAN, or APL.

These two functions are similar to the load and save commands in MATLAB with the

12

added benefit that you can edit the data file. Currently, however the format does not

handle complex numbers. Complex matrices must therefore be stored as a pair of real

matrices.

The data file for these two functions has a relatively simple format. The first line,

indicated by an end of line character or carriage return, contains the matrix row and

column dimensions, in order. Generally there are one or two integer numbers in the first

fine. If there are more than two integers in the first line, getdata counts them, multiplies

them all together, and returns the results of the count, and the data as a column vector

with a length equal to the product of the numbers in the first line. If there is one integer in

the first line, getdata returns a column vector of the length specified by that number. If

there is a non-integer in the first line getdata truncates the number at the decimal point

and interprets it as an integer.

The following examples illustrate the use of getdata and putdata:

Consider the file:

4 3

1.0 3 .5E01 7

9 11.0 2 4

60E-02 8 10 12

This would be read by getdata to the matrix:

1.0000 3.0000 5.0000

7:0000 9.0000 11.0000

2.0000 4.0000 0.6000
8.0000 10.0000 12.0000

13

On the other hand the file:

3 4

1 3 5 7 9

11 2 4

6 8

10

12

would be read by getdata as the matrix:

1 3 5 7]

9 11 2 4

6 8 10 12

Note that it does not matter how many numbers are contained on each line, just the

first line numbers determine the matrix dimensions. If the number of data points in the file

is not equal to the product of the numbers in the first line, getdata appends zeros or

truncates the input, whichever is necessary. Also, if there is data that getdata does not

recognize as real numbers, it skips that data.

One additional function available on the UNIX workstations at the Naval

Postgraduate School and with 386-MATLAB is the show command. The function show,

when used with Sunview windows or in 386-MATLAB, allows the user to display images

while inside the MATLAB environment. Invoking the show command in 386-MATLAB

calls the DISPLAY menu described below. In the UNIX environment, show calls the

program looksun to open a window and display the image on the screen.

Displaying images while inside PC-MATLAB is not possible at this time. However

the separate stand-alone program called DISPLAY is available. To use this program you

must save your image to a file and exit MATLAB. (Under the Windows 3.1 environment

14

you can display in a separate DOS window without exiting MATLAB in its own window.)

The command display filename will call up DISPLAY menu. From this menu you can

display your entire image, part of your image, or reduce the size of your image and then

display it. ESC returns you to the prompt from which you called display, either the C:>

prompt or the MATLAB>> prompt in 386-MATLAB (if show was used).

C. EDGE DETECTION OPERATIONS

A very useful set of tools for the image processor is the set of edge detectors. The

Image Processing Toolbox includes the following edge detectors: gradv, gradh, laplac,

roberts, and sobel.

Edges in images are caused by spatially abrupt changes in intensity from one region

in an image to the next. The method of determining edges in all of the edge detectors in

this Toolbox is based on computing the local derivative, or gradient operator. By

analyzing the value of the gradient the program can determine whether an edge is present

or not. A high (positive or negative) value of the gradient indicates presence of an edge

while a low or zero value for the gradient indicates no edge.

The gradv and gradh functions determine vertical and horizontal edges,

respectively. They are also the basis for the sobel function. The gradient functions use a

digital approximation for determining the gradients and employ a mask that is convolved

with the image.
1 0 -1

The vertical mask is for gradv is 2 05
1 0 -1

1 2 1-

The horizontal mask is for gradh is 0 0

-1 -2

15

These masks are the vertical and horizontal gradient components of the Sobel

operator. They weight the pixels closest to the center by 2 to produce additional

smoothing and use a 3 x 3 operator instead of a 2 x 2 operator to make the derivative less

sensitive to noise. The Sobel operator, G(m,n), is then defined as:

G(m,n) = XV2 (mn) + Vv(mn)
where Vh = gradh

and Vv = gradv

These ftnctions, Vh and Vv, are simple two dimensional convolutions, and can be

implemented using the conv2 function in the SIGNAL PROCESSING TOOLBOX;

however, they are provided as MEX-files in the Image Processing Toolbox for speedier

execution. The implementation in C takes advantage of the integer-valued nature of

images and the fixed masks, it is therefore much faster than the conv2 function in

MATLAB.

The roberts operator, or Roberts gradient, is another method of approximating the

gradient. Roberts used the cross-differences of the pixels to determine the gradient.

Using the pixel references in Figure 3-1, Roberts gradient, Gr[Am,n)], is defined for an

image as [Ref L:p. 177]:
Gr[f (m,n)J= If(m,n) -f (m+ l,n+ 1)1

+If(m+ 1,n)-f(m,n+ l)i

f(m,n) ffm,n+l)

f(m+l,n) ffm+l,n+l)

Figure 3-1. Roberts Operator pixel representation.

Figure 3-2 shows four images of a house: the original, and three edge images

produced using gradh, sobel, and roberts.

16

(a)(b

Figure 3-2. Edge Detectors (a) Original image, (b) Edges produced by gradh operator, (c)
Edges produced by Sobel operator, (d) Edges produced by Roberts operator.

D. FILTERS

Filters are used for a variety of applications in image processing. For example,

Iowpass filtering is used to smooth edges and eliminate noise spikes in images. Lowpass

filtering blurs the image by taking out the high frequency components of the image's

Fourier transform. Highpass filtering is sometimes used for just the opposite effect, image

sharpening. By suppressing the low frequency components of the image's Fourier

transform, edges are enhanced.

17

Two specific filter functions, lowpass and highpass, are provided in the Image

Processing Toolbox. These filters are circular Butterworth filters with a cutoff frequency

and filter order specified by the user. A third filter is the blur function which simply

averages the pixels over a mask that is convolved with the entire image.

The median filter function, med, is a type of nonlinear image processing filter. It is

generally used to suppress spurious noise. The median filter takes a small section

surrounding a point (size specified by the user) in the image and replaces that point by the

median value of the points in the section. Small isolated noise spikes smaller in area than

the size of the filter, are suppressed, but edges tend to be preserved. Figure 3-3 below

shows the USC image, Lenna, with random white noise added, and the effect of median

filtering.

74

(a) (b)

Figure 3-3. Lenna (a) with noise, (b) image in (a) med filtered.

Another use for the med function is to smooth an image that has been enlarged

using the reduce command. The reduce function is used to either reduce or enlarge an

image by sub-sampling or replicating the pixels. The function is written as an M-file and

takes advantage of the array processing capabilities of MATLAB. For this reason the

reduction or enlargement factor must be an integer. The size of the output image is

18

determined by raising 2 to the power of the reduction factor. For enlargement the number

is a negative integer, while for reduction the number is a positive integer.

When enlarging an image the result is a somewhat crude image, resembling that of

an image displayed in four-bit binary instead of eight-bit binary. Below is an algorithm to

enlarge an image by 4, (the image is stored in the variable X). The images in Figure 3-4

show the reduced image and the enlarged images. Figure 3-4(b) is simply an enlargement

without any additional filtering and Figure 3-4(c) uses the algorithm below.

Y= reduce(X,1);
tempy = med(Y,3);
Y = reduce(tempy,l);
Yout = med(Y,3);

(a)

(b) (c)

Figure 3-4. Enlargement using reduce. (a) Original House, (b) image in (a) quadrupled
once, (c) image in (b) doubled two times and med filtered after each doubling.

E. MORPHOLOGICAL OPERATIONS

The term morphological means "having to do with structure or form."

Morphological operations in the Image Processing Toolbox generally operate on graphics,

i.e., matrices consisting of ones and zeros.

19

The basic functions in the morphological category include Minkowski addition and

subtraction. Combinations of these two functions, along with the set union and set

difference operations create many other interesting morphological operations. Included in

the Image Processing Toolbox are the functions bound, close, minkadd, minksub, open,

and graphic.

Minkowski addition (also called dilation [Ref. 2:p. 384, Ref 3:p. 473]) is defined as:

XE D -- {x: B. n X•o}
where B. is B translated to have its origin at x.

X) B is therefore the set of points, determined by the position of the origin of B, where

the intersection of B and X is not null. The Toolbox function minkadd performs this

function.

The following example illustrates Minkowski addition:

Let X be represented by the following object:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 * 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 * 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 * 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Let B, which is referred to as the structure element, be represented by this

object:

20

Then X (B is:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 * 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0

Nfinkowski subtraction (also called erosion [Ref. 2:p. 384, Ref. 3:p. 476]) is defined

as:
XEOB--{x: B,,c XI

where B& is B translated to have its origin at x.

The Toolbox function minksub performs this function.

Again let X be represented by the following object:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 * 0 0 0
0 0 0 0 0 * 9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Let B be represented by this object:

0 0 O0•

21

Then X e B is:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 * 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Bound is another useful morphological operation. It returns the outline or

boundary of an object. It uses minksub and the set difference operation (&)

bound(X) = X &- minksub(X,ones(3)).

The following is an example of bound:

Let X be the same as in the previous example:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 * 0 9 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

The structure element used in bound is:

22

00000 0000

bound(X) is:

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 o o * o 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

These examples can be reproduced in MATLAB using O's for the open dots and I's

for the solid dots. Use of the fornat + command will produce the following result on the

screen:

oooo4.4...o

fnthense eamplales can bhe rmaeProdceds nMTA sing 0oobs for hsormelthed openatdots ande:

for the soid dts. U ose ai of thef a fucin.I commnwilprouces the followigresul of n thae

Hnenistylvlfogrms antnd it histo intequaizti55on cuared ieyusn toohe o image. pruin noessing

Tti tu

fucton aalaleinth mae roesig oobo orhitorm4elte oeaton ae

equalie, hitograand hsp-ot

Histogramis the mostobasimo te funcitions It computsel theolstfograimag pofansimage

and, if there is no output argument, it calls hisplot to plot the histogram. If there is an

output argument, a vector of length 256 is returned containing the number of times each

intensity level from intensity 0 to intensity 255 occurred in the image. By using an output

23

argument, you can reproduce the plot any number of times for comparison without

recalculating the histogram.

The function equalize, can be used in two ways. The first use is with no lookup

table specified. equalize calls histogra to compute the densities of the pixel intensities,

and then uses the MATLAB function cumsum to equalize the densities of the pixels. It

then uses these new density values to map the output pixel values. This results in a new

image where all intensity values occur in approximately equal proportions. The second

utilization of equalize is with a lookup table specified in the function call. This can be

used to apply a grey scale transformation to an image.

The examples in Figure 3-5 show the effects of direct histogram equalization. All
three images have a border and a label added to them using the insert and label

commands, respectively. The two equalized images show the effect of the different border

shade on the overall equalization process. The darker the border, the lighter the equalized

image. Very dark images, with very little resolution, can often be equalized and the

resultant image shows features not discernible in the original image.

24

(a) (b)

(c)
Figure 3-5. Kathy (a) Framed, labeled, (b) Framed, labeled, histogram equalized,
(c) Framed in white, labeled, histogram equalized.

G. SUMMARY

The MATLAB Toolbox created with this thesis has a broad range of applications

for image processing. The input/output functions provide flexibility in the choice of

format for the image files, as well as speed. The morphological operations, when

combined with the edge detectors and histogram equalization operations, enhance the

user's ability to detect unseen objects in images, as well as enhance the overall picture

quality. The filters provide further means for image enhancement. The next chapter is a

case study involving an image that is of poor quality. The functions of the MATLAB

25

toolbox are applied to accomplish varying degrees of image enhancement, and to

illuminate parts of the image that are invisible to the human eye in the original image. The

case study illustrates one of many different sequences that will distort or enhance an

image. Many times the sequence of steps is determined by trial and error. A basic

knowledge of how the functions work, and exactly how that translates to the displayed

image is the key to selecting appropriate functions. Sometimes the best method is to try

several approaches and determine which results in the best image, either qualitatively or

subjectively. Appendix B provides suggestions for further reading. This same list is

reproduced in the MATLAB Image Processing Toolbox Documentation.

26

IV. A CASE STUDY

A. DISCUSSION

This chapter describes a case study that illustrates application of the toolbox

functions to an image processing problem. The study begins with an image that has had

its histogram altered, its edges blurred, and deteriorated by added white noise. The image,

pictured below in Figure 4-1, resembles a house on a dark and snowy night.

Figure 4-1. Distorted Image.

The image is obviously quite dark and has a large number of missing pixels. Some

possibilities for improving it are lowpass filtering, blurring, and median filtering. Each are

forms of filtering and serve to eliminage high (spatial) frequency noise and "fill in" the

missing pixels. However, both the blur function and lowpass Butterworth filter function

developed in this thesis smooth sharp edges (also characterized oy high spatial

frequencies). The blur function averages the pixel values within the mask and the result

replaces the pixel value in the image. The lowpass filter multiplies the frequency response

of a lowpass Butterworth filter (with cutoff frequency and filter order specified by the

user) with the two-dimensional Discrete Fourier Transform of the image. The resultant

27

image is obtained by taking the inverse two-dimensional Discrete Fourier Transform.

While this image will have the pixel dropouts filled in, the sharp edges will not be

preserved.

One of the median filter's specific advantages is that it tends to preserve edges. The

median filter takes a user-specified size mask and slides it over the entire image. Each

pixel is replaced by the median value inside the mask. Thus edges tend to stay edges, and

a spurious noise spike or a pixel dropout is replaced by an intensity exactly equal to at

least one of the surrounding intensities. The median filter was chosen to fill in the pixel

dropouts for this case study. The result is shown in Figure 4-2. Worth noting is that

virtually all of the pixel dropouts have been eliminated while the edges have been

preserved. When the unsharp masking is performed in the next step the latter point will be

verified.

Figure 4-2. Median filtering of Figure 4-1.

This image is still very dark. Details other than the house's trim are virtually

impossible to discern. The obvious first choices for the next step is to perform a

histogram modification. This may not be the best choice. A not so obvious choice is to

perform unsharp masking. Since the image appears so dark the possibility exists that no

28

more details can be shown in the image. By performing unsharp masking before

histogram modification, edges that are not visible to the eye at this point can be brought

out. If the edges are really not present than the process must take a different route,

perhaps performing other functions such as edge detection or histogram modification

before the median filtering step.

The unsharp masking subtracts a weighted low-resolution copy of the image from

the image. The low-resolution copy is constructed by using the blur function with a mask

size chosen by the user. The pixel intensities in the image are averaged with the

surrounding intensities as discussed in the previous section. The larger the number the

more blurred the resultant image appears. The unsharp masking function takes the blur

function mask dimension and the weighting factor as inpts. The image in Figure 4-3

shows the result of unsharp masking the image of Figure 4-2 with the mask dimension of 5

and the weighting factor of 0.833. This weighting factor makes the starting image-to-

blurred image ratio 5:1. The original pixel intensity values are all within a narrow range

close to zero and the subtraction of the blurred image makes the range even smaller. The

higher the intensity value in the blurred image, the more its weighted value is subtracted

from to the starting image's intensity value. This results in the intensity values being

grouped in a very narrow range. The last step in the unsharp masking algorithm is to scale

the intensity values between 0 and 255. Since the largest intensity value before scaling is

only 33 to 80 percent of its original value, the scaled image's resulting histogram is spread

over a larger range of values this produces higher contrast and makes more details visible.

Note that the compression of intensities must first occur before the scaling can have any

effect on the contrast.

29

Figure 4-3. Unsharp masking of dark image.

The image above shows quite a bit of detail, however it can still be improved. By

looking at the histogram of Figure 4-3 the next step in the enhancement process becomes

clear. In Figure 4-4 the histogram of Figure 4-3 reveals that the intensities are all below

100 and most are between 60 and 80.

0.6

of 0.4

OC-Cutt as

0.2

0
0 5o 100 150 200 250

Pixel IntgelI~y

Figure 4-4. Histogram of Figure 4-3.

30

A modification of the histogram is necessary to improve the image. The intensities must

be spread over a greater range of values to improve contrast in the image. The

transformation that is necessary to achieve this effect should have a gradual slope in the

lower range, with a slope increasing in the middle and gradually decreasing to zero in the

upper third of the range. A piecewixe linear transformation that has these characteristics

is shown in Figure 4-5.

250

200

ISO

OL4PL4 Itniafty

100

50

0 50 100 150 200 250

Input Intensity

Figure 4-5. Histogram transformation function.

The image of Figure 4-3 now needs to be histogram modified by the transformation in

Figure 4-5 using the equalize function. The result is shown in Figure 4-6.

31

Figure 4-6. Image of Figure 4-4 after histogram transformation.

The last step in the process is to unsharp mask the image once more. This sharpens

the edges and improves the contrast. One significant feature to note between the previous

use of unsharp masking this case study and the use here is the difference in the contrast

changes for each step. The first use of unsharp masking produced a much greater

difference in the contrast because the range of intensity values prior to the unsharp

masking was much narrower than in this step. (Note the non-zero values from 75 to 255.

Figure 4-7 shows the histogram for the image in Figure 4-6.

32

01

06

05

NumLber 0

Of

Occrmwc 03

02

0'

00 0 2002W0

Pixe Irtie"ut

Figure 4-7. Histogram of Figure 4-6.

In this step the parameters for the unsharp masking happen to be the same as in the

previous use of the unsharp masking procedure, blur function dimension equal to 5 and

weighting factor equal to 0.833. The finished product in this image enhancement process

is shown in Figure 4-8

Figure 4-8. Result of Unsharp Masking.

33

B. CONCLUSIONS

The final product is a significant improvement to the image in Figure 4-1. The type

of functions and the order in which they were used in this process are by no means the

only method to accomplish image enhancement. The type of image must be considered

before the method of enhancement can be chosen. Some aspects to consider are whether

the image has sharp edges, high or low contrast, or possibly large areas of constant

intensity. The steps to consider in the enhancement process can then be addressed. For

instance, if the image does not have sharp edges, unsharp masking will only serve to

spread out the intensity values. If there are large areas of constant intensity then unsharp

masking will have little, if any, effect on the image.

Other functions in the Image Processing Toolbox can be used to produce different

effects in images. The edge detection operations can be used with the morphological

functions to outline certain objects or areas in an image. The graphic and label operations

can be used to put a label in an image for viewing. (See Figure 3-5) The Morphological

operations can also be used to find and isolate objects within an image.

34

V. SUMMARY AND CONCLUSIONS

A. REVIEW OF THESIS

This thesis provides an Image Processing Toolbox for use in MATLAB. Several

functions were provided by Erkan Aykaq in his thesis, "Enhancement of Image Processing

Capabilities for Different Environments". [Ref. 5] The Toolbox contains input/output

functions from Aykag's thesis, improvements to several of his functions, and many new

functions. It consists of 38 functions to read in, enhance, restore, trar4orm, filter, detect

edges, re-size, display, and save images. It also provides complete documentation under a

separate cover which includes a tutorial section, and a distribution diskette. The

documentation is in the style of that of other toolboxes available from MATLAB. The

functions are user-friendly, generally fast, and encompass a wide range of possibilities

within each of the categories listed above. All of the functions on the distribution diskette

provide on-line information when the MATLAB help command is invoked. Many of the

functions, which have algorithms that require the use of one or more for-loops, are written

as MEX-files, with an M-file included for the help facility.

The Toolbox has a separate distribution for SUN SPARCstations and PC

compatibles. The diskette for the PC compatibles can be used for both PC-MATLAB and

386-MATLAB. All functions that involve input/output are MEX-files which check for the

array size, a requirement for PC-MATLAB. All other functions are internal to the

MATLAB environment and thus need not include this feature. The MEX-files for PC-

MATLAB are compiled with the mex extension while the MEX-files for 386-MATLAB

are compiled with the .mx3 extension. PC-MATLAB only recognizes .mex when looking

for MEX files and 386-MATLAB only recognizes .mx3, so there is no need for a separate

diskette for the two PC compatible Toolboxes.

35

A detailed description for creating new MEX-files is presented in Chapter II,

including information on compilation in MATLAB version 4.0 when it becomes available.

Appendix A continues the description with a full program included. A tutorial is provided

in Chapter III that includes examples for many of the functions. Chapter IV contains a

case study in which a distorted image is restored using the Toolbox functions.

B. AREAS FOR FUTURE WORK

1. Expanding the Toolbox

The Toolbox can be expanded in several areas. One such area is in the

histogram modification set of functions. Presently the transformation function must be

formulated through educated guessing and trial and error. A more effective and efficient

method would be to use the input histogram and a desired histogram to build a

transformation function that modifies the input histogram automatically. A technique for

doing this is described in Reference 6. Other areas for possible future expansion are

extension of the morphological operations for use on images (vice just graphics), and

addition of more types of filters, pseudo-color, and functions for image encoding. Image

processing is an interesting area of study. The Toolbox provided from this thesis also

makes it fun to do in MATLAB!

2. Creating an Interface Between MATLAB and the SPIDER Library

While this Toolbox contains a large and diverse set of image processing

functions, the SPIDER Library in use at the Naval Postgraduate School has a far greater

expanse of functions. SPIDER is not as user-friendly as MATLAB, but it may be possible

to access the SPIDER Library functions from MATLAB via an interface program using

the FMEX utility provided with MATLAB

36

APPENDIX A

EXAMPLE MEX-FILE

The source code for the for-loop in the equalize function is provided in this

appendix to illustrate the use of the three functions recalloc, redimension, and rematlab in

a MEX-file, and show a short but complete program. This program replaces a double

for-loop in the M-file function equalize. The M-file with for-loops implemented in

MATLAB on the SUN SPARC workstation takes approximately four minutes for an

image of 256 x 256 pixels. Implementing it with this MEX-file the M-file takes less than 3

seconds! The program was compiled with the Metaware High C compiler for the 386-

MATLAB Toolbox, and with Borland Turbo C++ for the PC-MATLAB Toolbox. For

the UNIX version, the function prototypes cannot be included because the compiler for

the UNIX system at Naval Postgraduate School uses traditional C and will not accept

function prototypes during compilation. The function parameter declarations must be the

classic style for the Metaware High C compiler; for the UNIX they can be either classic or

modem form (ANSI C standard).

37

equal.c Program

/*This routine is for MATLAB version 3.5
equal routine called by the equalize.m routine to execute the loop */

#include <math.h>
#include "cmex.h"
#define AIN prhs[O] /* Gives a label to the first input argument */
#define SOUT plhs[0] /* Gives a label to the output argument */
#define BIN prhs[1]/* Gives a label to the second input argument */

user fcn(nlhs,plhs,nrhs,prhs) /* Used in place of maino */

int nlhs,nrhs;
Matrix *prhs[],*plhs[]; /* Sets type Matrix for the variable pointers */
{

int ij,am,an;
short int **immage,**filtim;
double *filtered im,*image,*lut;

/* Check for correct number of input,output arguments */
if(nrhs !=2) mexerror("must be two input arguments");
if(nlhs !=1) mex error("must be one output argument");
lut = B_IN -> pr; /* Sets pointer to real part of the array and calls it lut */
image = A-IN -> pr; /* Sets pointer to real part of the input image and calls it image */
an = A_IN -> n; /* Gets the column dimension of the input array */
am = A_IN -> m; /* Gets the row dimension of the input array */
S_OUT = creatematrix(amanREAL); /* Creates space, sets pointer for output */
filteredim = S OUT -> pr;
filt im=(short int**)recalloc(am, an); * creates I-D arrays of short ints */
immage=(short int**)recalloc(am,an);
redimension(filt-im,image,am,an); /* Recasts I-D array to 2-D arrays, (faster access)

*/

for (i= I ;i<am- I ;++i)

for (j= j<an-I ;++j)
filt_im[i]j]=lut[filtim[i][j]]; /* performs function--histogram transformation */

} /* (the whole purpose for this program) */
rematlab(filteredim,filtim,am,an); /* recasts result to I -D array to return to */

/* MATLAB */

38

recalloc(m,n)
int M~n;

short int **arra~y;
0 mt i;

afray=(short int**) mex_calloc(m~sizeof(short int*));
for (i0O;i<m;++i)

afray[i] = (short int*) mex calloc(nsizeof(short int));
return array;

redimension(array~out,arrayin,ni,n)
short int **array out;
int m,n;
double *array jfl;

int i~j;
for (i=O;i<n;++i)

for (j=Oj<m;++j)
array outO][i]=afray mnhi*ni+jJ;

rematlab(array~out,arrayin~m~n)
short int **affayjin;
int m~n;
double araj~.y out;

int ij;
for (i=O;i<n;++i)

for 0j=Oj<m;++j)
array out~i*m+j]=(double)array mnU](iI;

39

APPENDIX B

SUGGESTED READING

Charles R. Giardina and Edward R. Dougherty, Morphological Methods in Image and
Signal Processing, Prentice-Hall, 1987.

Rafael C. Gonzalez and Paul Wintz, Digital Image Processing, Addison Wesley, 1987.

Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1986.

Jae S. Lim, Two-Dimensional Signal and Image Processing, Prentice-Hall, 1990.

W.K. Pratt, Digital Image Processing, Second Edition John Wiley and Sons, Inc., 1991.

MA TLAB User's Guide, The MathWorks, Inc., 1985-1991.

40

REFERENCES

1. Gonzalez, R.C. and Wintz, P., Digital Image Processing, Addison Wesley, 1987,
Chapter 4.

2. Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

3. Pratt, W.K., Digital Image Processing, Second Edition, John Wiley and Sons, Inc.,
1991.

4. MATLAB User's Guide, Beta 3, The MathWorks, Inc., 1992.

5. Aykaq, E., "Enhancement of Image Processing Capabilities for Different
Environments", Master's Thesis, Naval Postgraduate School, Monterey, California,
June, 1991.

6. Lim, J. S., Two-Dimensional Signal and Image Processing, Prentice-Hall, 1990,
pp. 455-459.

7. MA TLAB User's Guide for MS-DOS Personal Computers, The MathWorks, Inc.,
1990.

8. 386-MA TLAB for 80386-based MS-DOS Personal Computers User's Guide, The
MathWorks, Inc., October 15, 1990.

9. PRO-MA TLAB for Sun Workstations User's Guide, The MathWorks, Inc., January
31, 1990.

41

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. C. Therrien, Code EC/Ti 5
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Prof. R. Cristi, Code EC/Cx 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. LCDR Dorothy J. Freer 3
NAPRA
PSC 477 Box 35
FPO AP 96306

7. Dr. R. Madan 1
ONR Code 1114
Office of Naval Research
Arlington, Virginia 22217-5000

42

